I’m only aware of one RISC-V system where I can say the core count is there: the Milk-V Pioneer board and its 64-core SG2042 processor from two years ago. It’s comparable in price to a 64-core ARM Ampere CPU+motherboard (USD$1500 for the board), which seems somewhat reasonable when not considering the performance of each core. Hopefully the C930 core described in this article leads to more systems that aim for multi-core performance.
Most RISC-V development boards are only 4 cores or fewer, with just a few popping up in the last year with 8 cores and nothing higher besides the SG2042. The best single-core RISC-V performance so far is on the SiFive P550 but it’s only 4 cores and comes on a development board that costs USD$500 (plus another $150 for tariffs if shipping to the US). You could easily get a 12-core AMD CPU and motherboard combo for less than that.
I’m only aware of one RISC-V system where I can say the core count is there: the Milk-V Pioneer board and its 64-core SG2042 processor from two years ago. It’s comparable in price to a 64-core ARM Ampere CPU+motherboard (USD$1500 for the board), which seems somewhat reasonable when not considering the performance of each core. Hopefully the C930 core described in this article leads to more systems that aim for multi-core performance.
Most RISC-V development boards are only 4 cores or fewer, with just a few popping up in the last year with 8 cores and nothing higher besides the SG2042. The best single-core RISC-V performance so far is on the SiFive P550 but it’s only 4 cores and comes on a development board that costs USD$500 (plus another $150 for tariffs if shipping to the US). You could easily get a 12-core AMD CPU and motherboard combo for less than that.
There’s also the deep computing mainboard from framework. Also that p550 uses a new CPU while the mainboard uses a jh710.
The p550 is less rpi and more like those rockchip powered boards from radxa. (ignoring core count).